Highest weight modules over pre-exp-polynomial Lie algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weight Modules over Exp-polynomial Lie Algebras

In this paper, we generalize a result by Berman and Billig on weight modules over Lie algebras with polynomial multiplication. More precisely, we show that a highest weight module with an exp-polynomial “highest weight” has finite dimensional weight spaces. We also get a class of irreducible weight modules with finite dimensional weight spaces over generalized Virasoro algebras which do not occ...

متن کامل

Characters of Highest Weight Modules over Affine Lie Algebras Are Meromorphic Functions

We show that the characters of all highest weight modules over an affine Lie algebra with the highest weight away from the critical hyperplane are meromorphic functions in the positive half of the Cartan subalgebra, their singularities being at most simple poles at zeros of real roots. We obtain some information about these singularities. 0. Introduction 0.0.1. Let g be a simple finite-dimensio...

متن کامل

Weight Modules of Direct Limit Lie Algebras

In this article we initiate a systematic study of irreducible weight modules over direct limits of reductive Lie algebras, and in particular over the simple Lie algebras A(∞), B(∞), C(∞) and D(∞). Our main tool is the shadow method introduced recently in [DMP]. The integrable irreducible modules are an important particular class and we give an explicit parametrization of the finite integrable m...

متن کامل

Koszul Duality for Modules over Lie Algebras

Let g be a reductive Lie algebra over a field of characteristic zero. Suppose that g acts on a complex of vector spaces M by iλ and Lλ, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of M. We establish Koszul duality between them.

متن کامل

Highest-weight Theory for Truncated Current Lie Algebras

Let g be a Lie algebra over a field k of characteristic zero, and a fix positive integer N. The Lie algebra ĝ = g ⊗k k[t]/t N+1 k[t] is called a truncated current Lie algebra. In this paper a highest-weight theory for ĝ is developed when the underlying Lie algebra g possesses a triangular decomposition. The principal result is the reducibility criterion for the Verma modules of ĝ for a wide cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2009

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2009.09.024